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Abstract The friction and shear strength of nanowire

(NW)–substrate interfaces critically influences the electri-

cal/mechanical performance and life time of NW-based

nanodevices. Yet, very few reports on this subject are

available in the literature because of the experimental

challenges involved and, more specifically no studies have

been reported to investigate the configuration of individual

NW tip in contact with a substrate. In this letter, using a new

experimental method, we report the friction measurement

between a NW tip and a substrate for the first time. The

measurement was based on NW buckling in situ inside a

scanning electron microscope. The coefficients of friction

between silver NW and gold substrate and between ZnO NW

and gold substrate were found to be 0.09–0.12 and 0.10–0.15,

respectively. The adhesion between a NW and the substrate

modified the true contact area, which affected the interfacial

shear strength. Continuum mechanics calculation found that

interfacial shear strengths between silver NW and gold

substrate and between ZnO NW and gold substrate

were 134–139 MPa and 78.9–95.3 MPa, respectively. This

method can be applied to measure friction parameters of

other NW–substrate systems. Our results on interfacial

friction and shear strength could have implication on the

AFM three-point bending tests used for nanomechanical

characterisation.

Keywords Nanowire � Interface � Friction �
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Introduction

In nanodevices, nanowires (NWs) are typically integrated

to larger structures. The NW–substrate interfaces therefore

play a critical role in both mechanical reliability and

electrical performance of these nanodevices, especially

when the size of the NW is small [1, 2]. Such interfaces

include two configurations, NW length or NW tip in con-

tact with the substrate, and both configurations have a wide

range of applications. For example, the tip-substrate con-

tacts are present in nanogenerators [3], nanostructured solar

cells [4], atomic force microscopy (AFM) with carbon

nanotube (CNT) tips [5], CNT tapes [6] and many other

nanodevices. Indeed, as recently outlined by Wang [7], one

critical future direction for nanogenerator research is study

of the NW–metal interface to build a robust, low wearing

structure for improving the device lifetime.

Experimental work on NW interfacial mechanics has

been limited so far due to experimental challenges at the

nanoscale [8] and the fact that many existing tribology

tools such as AFM, surface force apparatus (SFA), quartz

microbalance and microfabricated devices cannot be

readily applied [9, 10]. Static friction force between NWs

(including CNTs) and substrates was estimated from the

highly deformed shapes of NWs [11]. Recently CNTs were

found to slip on silicon oxide surface at a lateral force of 8

nN [12], and ZnO NWs to slip on silicon surface at a few

lN [13]. However, the above studies on friction are only
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limited to the configuration of NW length in contact with a

substrate. To the best of our knowledge, no experiments

have been reported to investigate the configuration of

individual NW tip in contact with a substrate.

Here we report the first experimental study on the fric-

tion between NW tips (ends) and a substrate. Silver and

ZnO NWs in contact with a gold-coated substrate were

studied as model systems in view that silver and ZnO NWs

have very different tip shapes. Silver NW is an important

class of metallic NWs because of its potential use as

interconnects in view that bulk silver exhibit very high

electric and thermal conductivity [14]. ZnO is one of the

most important semiconductor NWs with a broad range of

applications including nanogenerators, biosensors, nanola-

sers and nanoelectromechanical systems (NEMS) [15]. The

friction measurements reported in the present article were

enabled by an innovative experimental method based on

column buckling theory. The experiments were conducted

in situ inside a scanning electron microscope (SEM) using

a nanomanipulator as the actuator and an AFM cantilever

as the force sensor.

Experimental

The silver NWs were synthesised using a seed-assisted,

solution-phase method with a fivefold twin structure [16].

Figure 1a is a transmission electron microscopy (TEM)

image showing the NW tip. Figure 1b and c are high-res-

olution TEM images showing a layer of silver oxide with

varying thickness on the NW surface. The ZnO NWs were

synthesised using the vapour–liquid–solid (VLS) method

with a wurtzite structure and growth direction of [0001]

[17]. Figure 1d is a SEM image showing the tip of a ZnO

NW, which appears to be flat.

In situ SEM buckling tests of NWs were conducted as

shown in Fig. 2. A nanomanipulator (Klocke Nanotechnik,

Germany) that possesses 1 nm resolution in three orthog-

onal directions was used to pick up individual NWs

[18, 19]. A NW was clamped onto the tungsten tip on the

nanomanipulator using electron beam-induced deposition

(EBID) of carbon. Then the NW was approached to make

contact with an AFM cantilever (OBL-10, Veeco). Carbon

deposition was not used at the NW–cantilever interface.

Compressive force was applied to the NW by the nanom-

anipulator movement, which led to buckling of the NW. In

this case, the boundary condition was fixed-pinned. Con-

tinued loading further changed the postbuckling shape of

the NW until sliding occurred at the NW–cantilever

interface.

After buckling of the NW, there exist two forces at the

NW–substrate interface, a compressive (normal) force and

a frictional (lateral) force. The compressive force on the

NW can be easily measured from the deflection of the

AFM cantilever; however, it is not trivial to measure

the friction force. Below we describe a method to measure

friction force based on the buckling theory. Free-body

diagram of a buckled member under fixed-pinned boundary

condition is shown in Fig. 3a, with the left end fixed and

the right end pinned. A small lateral deflection gives rise to

a moment M at the fixed end and shear force (friction force)

F at each end of the member. From the moment balance, it

can be easily obtained that F ¼ M=L, where L is the length

of the member. The governing equation at a section with a

distance x from the right end is given by

y00 þ k2y ¼ M

EI

x

L
ð1Þ

where k2 ¼ P=EI, E is the Young’s modulus and I is the

moment of inertia. The solution to Eq. 1 is

y ¼ A sin kxþ B cos kxþM

P

x

L
ð2Þ

Taking into account the fixed-pinned boundary

condition, we obtain

(c) 

(b) (a) 

oxide

oxide

(d) 

Fig. 1 a–c TEM images of a silver NW; b, c show an oxide layer on

the surface of the silver NW; d SEM image of a ZnO NW

Fig. 2 Buckling process of an individual NW; a is before buckling

and b is after buckling and just prior to sliding on the right end
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y ¼ M

P

x

L
þ 1:02 sin 4:49

x

L

� �h i
ð3Þ

Equation 3 describes the shape of the member in the

postbuckling stage. Details on the equation derivation can

be found elsewhere [20]. Eq. 3 provides the theoretical

basis of our method to measure the friction force. By fitting

the observed shape of the NW just prior to sliding to Eq. 3

using the nonlinear least squares method, M can be

determined since P is measured from the deflection of

the AFM cantilever. Then F can be obtained using F = M/L.

Figure 3b shows the fitting of a deformed NW to Eq. 3.

Clearly the agreement is very good.

Results and Discussion

Following the method described above, three silver NWs

and three ZnO NWs were tested for friction measure-

ments. The Amonton–Coulomb friction law is written as

F = lP, where l is the so-called coefficient of friction.

The normal force, friction force and coefficient of friction

for all six NWs are listed in Table 1. Note that these NWs

did not break in the buckling experiments so that each

NW was tested multiple times with very good repeat-

ability. However, the Amonton–Coulomb law was

obtained from empirical observations with many counte-

rexamples; for instance, geckos are able to move on walls

and ceilings when P B 0. A more fundamental friction

law that links friction and adhesion was proposed by

Bowden and Tabor [21],

F ¼ sA ð4Þ

where s is the interfacial shear strength and A is the true

contact area. This law has been supported by numerous

SFA and AFM experiments [10]. The two theories were

reconciled by considering the multiple asperities among the

contacting surfaces [22]; as a result the true contact area is

typically proportional to the normal force.

The NW–substrate contact is treated as the single-

asperity contact because the NW diameters are smaller than

the wavelength of the substrate topography. In order to

evaluate interfacial shear strength using Eq. 4, the true

contact area must be determined. In our experiments as

well as AFM experiments, the true contact area is calcu-

lated using continuum mechanics models. The well-known

Hertzian model does not take into account attractive

adhesion forces between the contacting surfaces. Other

widely accepted models that take adhesion force into

account are due to Johnson, Kendall, and Roberts (JKR)

[23], Derjaguin, Mutter, Toporov (DMT) [24] and Maugis

[25], respectively.

For simplicity, the continuum models typically assume

the contact between a sphere and a flat surface. It is known

that the JKR and DMT theories are two extremes of a

spectrum of elastic solutions determined by the Tabor

parameter [26], which is given by

l ¼ 16Rc2

9K2z3
0

� �1=3

ð5Þ

where R is the radius of the sphere, K is the reduced

modulus of two materials K ¼ 4=3½ð1� m2
1Þ=E1 þ ð1� m2

2Þ
=E2��1

with E1 and E2 the respective Young’s moduli, and

m1 and m2 the respective Poisson’s ratios, z0 is the inter-

atomic equilibrium distance (=0.2 nm), c is the interfacial

energy per unit area (work of adhesion). Each NW tip was

fitted with a sphere. When l[ 5, the JKR model is valid;

when l\ 0.1, the DMT model should be applied; in the

intermediate range, the Maugis model becomes appropri-

ate. In all our experiments 2.05 \ l\ 2.39 (see Table 2),

so the Maugis model should be used. However, the Maugis

model does not have an explicit expression for contact

L 

F 
P 

M 

F 

P x 

y 

(a)

)]
1443.4

49.4sin(02.1
1443.4

[5059.0
xx

y +=

(b)

Fig. 3 a Free-body diagram of a buckled column with fixed-pinned

boundary condition. Right end is the NW-substrate interface. b Non-

linear least squares fitting of Eq. 3 to digitized shape of a NW prior to

sliding

Table 1 Normal force, friction force and coefficient of friction in

each experiment

Sample Silver

1

Silver

2

Silver

3

ZnO

1

ZnO

2

ZnO

3

Normal force P
(nN)

263 277 465 186 203 215

Friction force F
(nN)

32.5 31.7 40.0 18.6 30.8 21.1

Coefficient of

friction l
0.12 0.11 0.09 0.10 0.15 0.10
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radius. For the Tabor parameter in this range, the JKR

model was found to approximate the Maugis solution very

closely [27], therefore the JKR model was used in our

calculation due to its explicitness.

Following the Hertz and JKR models, the contact radius

a as a function of the externally applied load P is given by

a ¼ PR

K

� �1=3

ð6aÞ

a ¼ R

K
Pþ 3cpRþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6cpRPþ 3cpRð Þ2

q� �� �1=3

ð6bÞ

respectively, where c ¼ c1 þ c2 � c12 � 2
ffiffiffiffiffiffiffiffiffi
c1c2

p
with c1

and c2 the respective surface energy and c12 the interface

energy. c1 = 1.37 J/m2 for gold, c2 = 0.8 J/m2 for silver

oxide [28] and c2 = 1.74 J/m2 for ZnO with {0001} sur-

face [29]. Therefore, c = 2.09 J/m2 and c = 3.09 J/m2 for

the contacts between gold and silver oxide and between

gold and ZnO, respectively. In addition, Egold = 78 GPa,

Esilver = 84 GPa, EZnO = 140 GPa, mgold ¼ 0:44, msilver ¼
0:37, mZnO ¼ 0:30 [30]. The contact radius, contact pressure

and interfacial shear strength calculated using the two

models are listed in Table 2. It can be seen that the inter-

facial shear strengths between silver NW and gold

substrate and between ZnO NW and gold substrate are

134–139 MPa and 78.9–95.3 MPa, respectively, according

to the JKR model. These values are in good agreement with

those obtained from AFM and mesoscale friction tester in

similar environment (vacuum or dry) [31].

Several issues related to the experiments and data

analyses are discussed. First of all, our measurements

showed that no metallic bonding formed between silver

NWs and the gold substrate as the strength of metallic

bonding is typically on the order of GPa [32]. This is due to

the presence of a thin layer of silver oxide, as shown in the

high-resolution TEM images (Figure 1). Second, it is not

appropriate to treat the ZnO NWs as the molecular junc-

tions where the contact areas remain constant (in our case

the NW cross-sections) [33], otherwise the interfacial shear

strength would be too small. This is reasonable because it

is very likely that the NW is not perfectly perpendicular to

the substrate. Edge of the NW tip could be in contact with

the substrate, and the contact area can then be approxi-

mately fitted with a sphere. Third, previous experiments

showed that electron beam increases adhesion force

between semiconductors and metals [34, 35]. For contacts

between ZnO NW tips and a gold substrate, we found the

adhesion force did not show noticeable change when the

contact area was exposed to electron beam only for a short

time (e.g., less than 10 s) [36]. Last, although our experi-

mental method gave rise to the first measurement of the

friction data between NW tips and a substrate, we are

aware that it cannot measure the friction as a function of

the progressively applied normal force. MEMS devices

with simultaneous normal and lateral force measurement

capability are under development to address this issue.

Our results on interfacial friction and shear strength

could have direct implication on the AFM three-point

bending tests that are widely used in extracting mechanical

properties of one-dimensional nanostructures including

CNTs and NWs [37, 38]. Often the adhesion between the

NWs and the substrate is assumed to be strong enough to

provide a fixed–fixed boundary condition for the three-

point bending tests. The assumption is valid for NWs with

small diameters; but for those with large diameters, it could

lead to large data scatter as typically observed in experi-

ments. Our results could be incorporated into data reduc-

tion in the three-point bending experiments to quantify the

influence of adhesion and friction on the measured

mechanical properties. Other methods that could also be

used to eliminate the ambiguity caused by the NW–sub-

strate friction in the three-point bending tests include EBID

of platinum or carbon to reinforce the clamps [39].

Conclusions

In summary, a new experimental method to measure the

friction between a NW tip and a substrate has been

developed. Silver and ZnO NWs were tested with a gold-

coated surface as the substrate. The coefficients of friction

between silver NW and gold substrate and between ZnO

NW and gold substrate were found to range from 0.09 to

0.12 and from 0.10 to 0.15, respectively. The adhesion

between NWs and the substrate substantially modified the

Table 2 Contact pressure and interfacial shear strength using the

Hertz and JKR models

Sample Silver

1

Silver

2

Silver

3

ZnO 1 ZnO 2 ZnO 3

Tip radius R (nm) 27 27 29 25 40 25

Tabor’s parameter 2.28 2.28 2.33 2.05 2.39 2.05

Hertz model

Contact radius

a (nm)

4.79 4.87 5.93 3.90 4.69 4.09

Contact pressure

(GPa)

3.65 3.72 4.21 3.90 2.94 4.09

Shear stress s
(MPa)

451 425 362 390 445 402

JKR model

Contact radius a
(nm)

8.d 8.68 9.58 8.32 11.1 8.40

Contact pressure

(GPa)

1.21 1.17 1.61 0.86 0.52 0.97

Shear stress s
(MPa)

139 134 139 85.6 78.9 95.3
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true contact area, which in turn affected the interfacial

shear strength significantly. According to the calculated

Tabor parameter, the JKR model was selected to approxi-

mately calculate the contact area and the interfacial shear

strength. The interfacial shear strengths between silver NW

and gold substrate and between ZnO NW and gold sub-

strate ranged from 134 to 139 MPa and from 78.9 to

95.3 MPa, respectively. These values are in good agree-

ment with previous results obtained in similar environment

(vacuum or dry) [31].
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